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Abstract

Presenting a novel approach, this paper offers a captivating proof of
the prime number theorem’s approximation pn ≈ nln(n). By creatively
intertwining complex analysis, Fourier techniques, and Dirichlet series,
our work reveals the enchanting connection between prime distribution
and the Riemann zeta function, emphasizing the aesthetic beauty of this
analytical relationship.
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such that:

Mp := {n ∈ N : p|n} = pZ ∩ N

therefore
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So using this operation we subtract all terms of

multiples of p for example let’s take that p = 3

then :
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so let’s subtract also the multiples of 2 :
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Repeating for the next terms ... : until we get :
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and we know that :⋂
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1 proof using induction

I was thinking If I could test euler product formula

using induction while that N is countable set. ,

suddenly I coincide with an elegant proof which I

would to provide it in this section.

let pn be the nth prime.

here is an equivalent formulation of (1) (sieve method)
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Lemma 1.
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Proof. for n = 1 : we have that (trivial) :
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taking the limite of (7) :
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∴
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Proof of infinitely many primes using Zeta Euler
product

as we proved before that

ζ(s) =
∏
p∈P
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∏
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such that

(∀n ∈ N∗) : Hn :=

n∑
k=1

1

n

(the harmonic sequence)
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Suppose there exist a finite number of primes : We

know that

∀p ∈ P : p > 1

so the product: ∏
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1

1− 1
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is a finite product because:

∀p ∈ P : p > 1 ⇒ 0 < 1− 1

p
< 1

and while that the product :∏
p∈P

1

1− 1
p

is finite and

1− 1

p
≁ 0 ⇒

∏
p∈P

1

1− 1
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≁ ∞

Absurd because the Harmonic series is a divergent

. I know , that you don’t like the proof above

therefore I intended to prove it to you using Euler

formulation : ∑
p∈P

1

p
= ∞ (8)

Proof. we have that :∏
p∈P

p

p− 1
= ∞

(using euler product in ζ(1))

∴ ∑
p∈P

ln(
p

p− 1
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=⇒
−
∑
p∈P
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p
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implies

−
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ln(1− 1
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) = ∞

∴ ∑
p∈P

1
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= ∞

∵
1

pn
≈ ln(1 +

1
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)

observe that lim pn = ∞

2 is there any equivalent to the sequence of prime
pn ?

Theorem 2. (Prime Number Theorem

(GAUSS PNT))

π(n) ≈ n

ln(n)
(9)

Remark :

π(n)n∈N∗
def
= Card({p ≤ n|p ∈ P})

Lemma 3. let un, vn ∈ RN such that : un ≈ vn
and An ∈ RN such that : limAn = ∞
∴ uAn ≈ vAn

7



Proof. let ϵ > 0 let’s prove that :

∃N ∈ N ∀n ∈ N n ≥ N =⇒ |uAn
vAn

− 1| < ϵ

we have by definition :

∃p ∈ N ∀n ∈ N n ≥ p =⇒ |unvn − 1| < ϵ

and by definition :

∃p0 ∈ N ∀n ∈ N n ≥ p0 =⇒ An > p

therefore by taking N = p we find the concerning

definition.

∃N ∈ N ∀n ∈ N n ≥ N =⇒ |uAn
vAn

− 1| < ϵ

QED.

Corollary 3.1.

n ≈ pn
ln(pn)

Proof. using the [Lemma3.0] and [thm2] we find

π(pn) ≈ pn
ln(pn)

and by definition we have that : π(pn) = n

which give us the corollary. QED.

Corollary 3.2.

ln(pn) ≈ ln(n)

Proof. [Cor3.1] give us that
pn

ln(pn)
= n(1 + o(1))

then

ln(pn)− ln(ln(pn)) = ln(n) + ln(1 + o(1))
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therefore

ln(pn) + o(ln(pn)) = ln(n) + o(1)

which give us

ln(pn) ≈ ln(n)

QED.

Corollary 3.3.

pn = n1+o(1)

Proof. [Cor3.2] give us

ln(pn) = ln(n)(1 + o(1))

therefore

pn = exp(ln(n))1+o(1)

which give us the final result

pn = n1+o(1)

in other part : ∃ϵn ∈ RN such that lim ϵn = 0 and

pn = n1+ϵn

without giving estimations , let’s find a simple

equivalence of nϵn

Corollary 3.4.

pn ≈ nln(n) (10)
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Proof. [Cor3.1] and [Cor3.3]

n1+ϵn ≈ nln(pn)

therefore

nϵn ≈ ln(pn)

as we have been seen in [Cor3.2]

pn ≈ ln(n)

by transitivity of ≈
nϵn ≈ ln(n)

and as we find before in proof of Cor[3.3]

pn = n1+ϵn = n.nϵn ≈ n.ln(n)

∴
pn ≈ nln(n)

which give us the corollary. QED.

we could observe simply that ,∑
p∈P

1

p

is divergent.

because we know that the bertrand serie :
∞∑
n=2

1

nln(n)

is divergent.
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